1.

a. Complete the following tables for $m(x)=2 x$ and $s(x)=x+1$

x	$m(x)=2 x$	$s(x)=x+1$
2		
1		
0		
-1		
-2		

b. Using the data from part a), on separate diagrams sketch mapping diagrams for $m(x)=2 x$ and $s(x)=x+1$

2. Let $q(x)=x^{2}$.
a. Complete the following table for $q(x)=x^{2}$.

x	$q(x)=x^{2}$
2	
1	
0	
-1	
-2	

b. Using the data from part a), sketch a mapping diagram for $q(x)=x^{2}$.

3.
a. Complete the following table for the composite function $f(x)=s(m(x))=2 x+1$.

x	$m(x)=2 x$	$s(m(x))=2 x+1$
2		
1		
0		
-1		
-2		

b. Use the table and the previous sketches of $1 . b$ to draw a composite sketch of the mapping diagram with 3 axes for the composite function $f(x)=s(m(x))=2 x+1$
c. Draw a sketch for the mapping diagram with $\underline{2}$ axes of $f(x)=2 x+1$.

4. Let $q(x)=x^{2}$ and $R(x)=s(q(x))=x^{2}+1$.
a. Complete the following tables for $q(x)=x^{2}$ and $R(x)=s(q(x))=x^{2}+1$

x	$q(x)=x^{2}$	$R(x)=s(q(x))=x^{2}+1$
2		
1		
0		
-1		
-2		

b. Using the data from part a), on separate diagrams sketch mapping diagrams for the composition $R(x)=s(q(x))=x^{2}+1$ with three axes and then two axes.

5. Solving Equations:
a. Use a standard algebraic approach to solve the following equation. Show all steps. Check your answer.

$$
2 x+1=5 \text {. }
$$

Work:

Check:

b. On the mapping diagram below indicate by adding and circling numbers and arrows how the diagram visualizes the work in your algebraic solution of $2 x+1=5$.

6. Solve $2(x-3)^{2}+\mathbf{1}=\mathbf{9}$ with a mapping diagram.
a. Express $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2 (x - 3})^{2}+\mathbf{1}$ as composition of core functions.

$$
f(x)=h(m(q(\mathrm{z}(x)))) \quad \text { where }
$$

$$
\begin{aligned}
& h(x)= \\
& m(x)= \\
& q(x)= \\
& \mathrm{Z}(x)=
\end{aligned}
$$

b. Sketch a mapping diagram for f as a composition.

c. On the mapping diagram below indicate by circling numbers and arrows how the diagram visualizes the solution of $\mathbf{2 (x - 3})^{\mathbf{2}}+\mathbf{1}=\mathbf{9}$. Check the solutions.

7. Let $\boldsymbol{f}(\mathbf{x})=\mathbf{m x}+\mathbf{b}$ sketch mapping diagrams for the following:

Use the same scale for the second axis.
a. $\mathrm{m}=-2 ; \mathrm{b}=1: f(\mathrm{x})=-2 \mathrm{x}+1$;
d. $\quad \mathrm{m}=0 ; \mathrm{b}=1: f(\mathrm{x})=0 \mathrm{x}+1$

b. $\mathrm{m}=2 \mathrm{~b}=1: f(\mathrm{x})=2 \mathrm{x}+1$

c. $\mathrm{m}=1 / 2 ; \mathrm{b}=1: f(\mathrm{x})=1 / 2 \mathrm{x}+1$

1
8.
a. Use a focus point in the mapping diagram to solve a linear equation:

$$
2 x+1=5 .
$$

Suppose f is a linear function with $f(1)=3$ and $f(3)=-1$. Without algebra
b. Use a focus point to find $f(0)$.
c. Use a focus point to find x where $f(x)=0$.
http://users.humboldt.edu/flashman/Presentations/MEC2017/MDWorksheetMEC.2017.pdf

