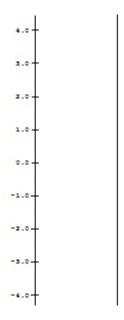

1.

a. Complete the following tables for m(x) = 2x and s(x) = x + 1

X	m(x) = 2x	s(x) = x + 1
2		
1		
0		
-1		
-2		

b. Using the data from part a), on separate diagrams sketch mapping diagrams for m(x) = 2x and s(x) = x+1

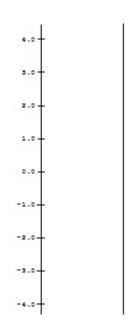


- 2. Let $q(x) = x^2$.
 - a. Complete the following table for $q(x) = x^2$.

х	$q(x) = x^2$
2	
1	
0	
-1	
-2	

b. Using the data from part a), sketch a mapping diagram for $q(x) = x^2$.

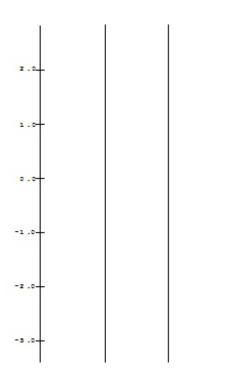
3.

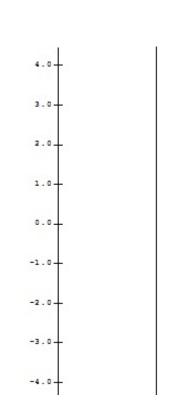

a. Complete the following table for the composite function f(x) = s(m(x)) = 2x + 1.

х	m(x)=2x	s(m(x)) = 2 x + 1
2		
1		
0		
-1		
-2		

b. Use the table and the previous sketches of 1.b to draw a composite sketch of the mapping diagram with 3 axes for the composite function f(x) = s(m(x)) = 2x + 1

c. Draw a sketch for the mapping diagram with $2 \arcsin f(x) = 2x + 1$.



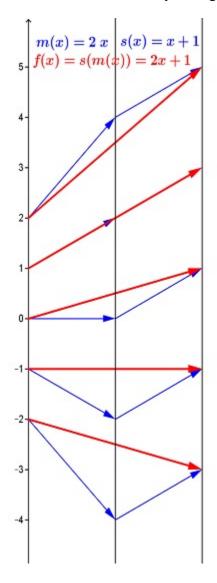


- 4. Let $q(x) = x^2$ and $R(x) = s(q(x)) = x^2 + 1$.
 - a. Complete the following tables for $q(x) = x^2$ and $R(x) = s(q(x)) = x^2 + 1$

Х	$q(x) = x^2$	$R(x) = s(q(x)) = x^2 + 1$
2		
1		
0		
-1		
-2		

b. Using the data from part a), on separate diagrams sketch mapping diagrams for the composition $R(x) = s(q(x)) = x^2 + 1$ with three axes and then two axes.

5. Solving Equations:


a. Use a standard algebraic approach to solve the following equation. Show all steps. Check your answer.

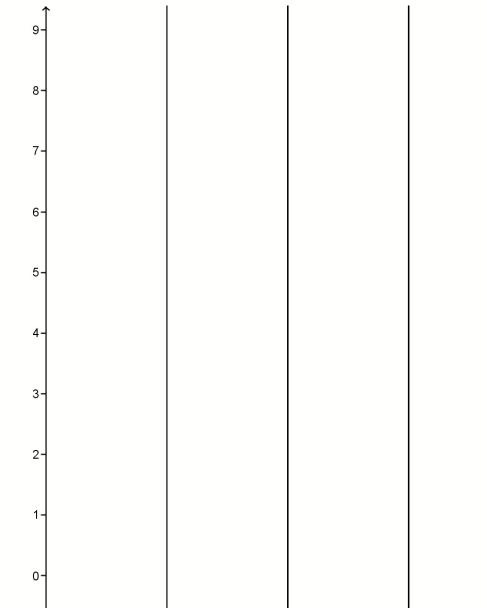
$$2x + 1 = 5$$
.

Work:

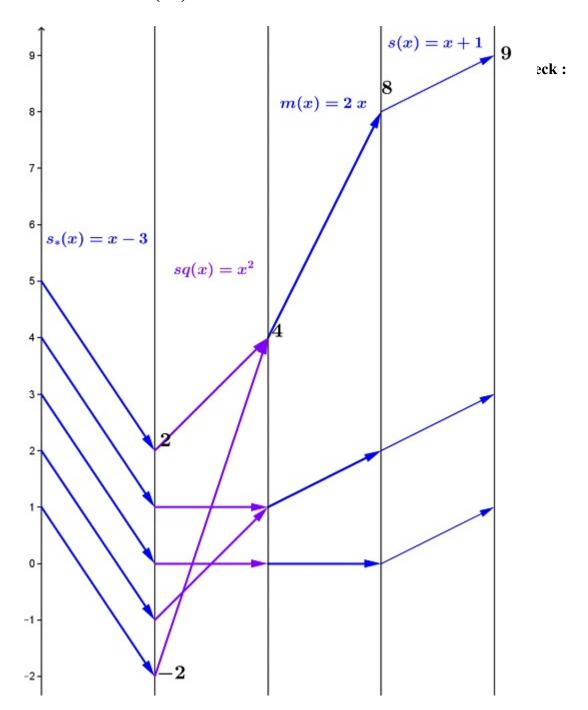
Check:

b. On the mapping diagram below indicate by adding and circling numbers and arrows how the diagram visualizes the work in your algebraic solution of 2x + 1 = 5.

- Solve $2(x-3)^2 + 1 = 9$ with a mapping diagram. 6.
 - Express $f(x) = 2(x-3)^2 + 1$ as composition of core functions.

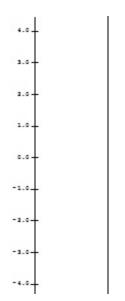

$$f(x) = h (m (q (z(x))))$$
 where

$$h(x) =$$

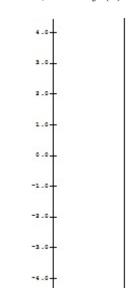

$$q(x) = \frac{1}{q(x)}$$

$$q(x) =$$

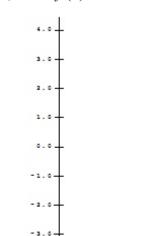
 $h(x) = \underline{\qquad}$ $m(x) = \underline{\qquad}$ $q(x) = \underline{\qquad}$ $z(x) = \underline{\qquad}$ Sketch a mapping diagram for f as a composition. b.


c. On the mapping diagram below indicate by circling numbers and arrows how the diagram visualizes the solution of $2(x-3)^2 + 1 = 9$. Check the solutions.

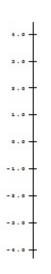
7. Let f(x) = mx + b sketch mapping diagrams for the following:


a.
$$m = -2$$
; $b = 1$: $f(x) = -2x + 1$;

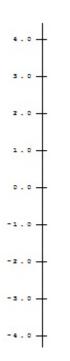
d.
$$m = 0$$
; $b = 1$: $f(x) = 0 x + 1$


b.
$$m = 2 b = 1$$
: $f(x) = 2x + 1$

e.
$$m = 1$$
; $b = 1$: $f(x) = x + 1$


c.
$$m = \frac{1}{2}$$
; $b = 1$: $f(x) = \frac{1}{2}x + 1$

ŀ


- 8.
 - a. Use a focus point in the mapping diagram to solve a linear equation:

$$2x + 1 = 5$$
.

Suppose f is a linear function with f(1) = 3 and f(3) = -1. Without algebra

- b. Use a focus point to find f(0).
- c. Use a focus point to find x where f(x) = 0.

