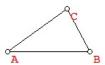
1. Quadrature Problem: Given a region in the plane, find a root so that the square of this root has the same area.

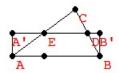
a. Quadrature of a Triangle: Given \triangle ABC,

Find a square \Box DEFG with root = DE and area of \Box DEFG = area of \triangle ABC

i. Construct a rectangle equal in area to that of ΔABC



ii. Construct a square equal in area to the rectangle.



b. Quadrature for Polygons:

Problem: Find the root of a square that has the same area as a given polygon. Suggest the outline for a procedure to accomplish the solution of the problem..

Hint: Use triangles and the Pythagorean Theorem.

2. Example for completing the square problem:

[al'Khowarizmi ≈820 AD and al'Khayyam≈1100 AD.]

Find the root of the square which when added to a rectangle with one side of the same length as the root gives a rectangle of area c.

has area c:

 $x^2+bx=c$, has root $x=\sqrt{(b/2)^2+c}-b/2$

- 3. Descartes Arithmetic for Segments:
 - a. Multiplication using a unit segment and proportional sides of similar triangles.

b. Square roots using a unit segment and right triangles in a semicircle.

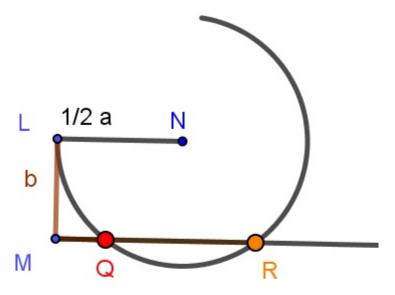
- 4. Descartes Arithmetic for Line Segments;
 - a. Multiplication
 - b. Square Roots
- 5. Descartes solves a quadratic equation for the arithmetic of segments.

$$z^2 = az - b^2$$

NL = 1/2 a, LM = b, $NL \perp LM$. $MQR \mid LN$

Circle with center N, through L, meeting MQR at Q and R.

Show that MQ and MR are solutions for z in the equation. [Hint:Use the Pythagorean Theorem]



- 6. Suppose $f(x) = x^2 4x + 2$
 - a. Draw a sketch of the graph g(x) = f(x) 2 by finding the roots of g.

b. Find the axis of symmetry for g and f.

c. Express f in the vertex form ("completing the square").

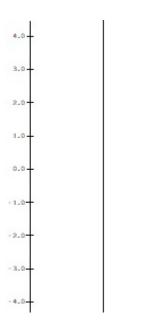
d. Solve the equation: $f(x) = x^2 - 4x + 2 = 0$.

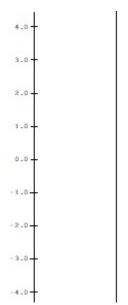
7.

a. Complete the following tables for m(x) = 2x and s(x) = x + 1

x	m(x)=2x	s(x) = x + 1
2		
1		
0		
-1		
-2		

b. Using the data from part a), on separate diagrams sketch mapping diagrams for m(x) = 2x and s(x) = x+1

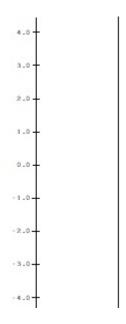




- 8. Let $q(x) = x^2$.
 - a. Complete the following table for $q(x) = x^2$.

x	$q(x) = x^2$
2	
1	
0	
-1	
-2	

b. Using the data from part a), sketch a mapping diagram for $q(x) = x^2$.

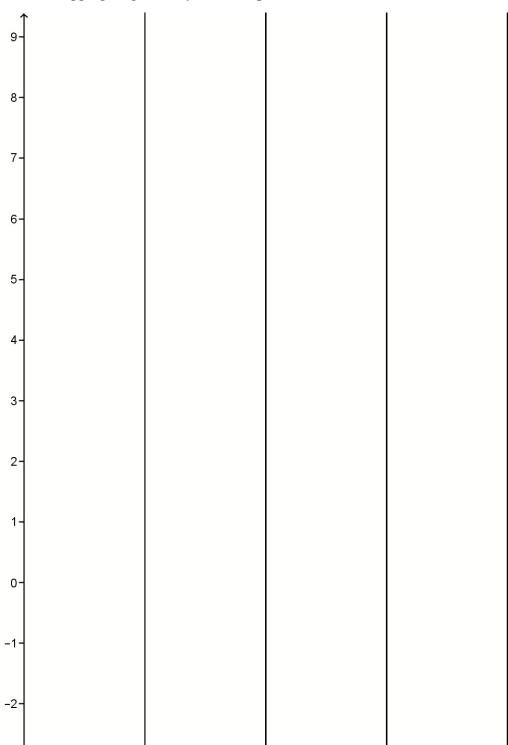


- 9. Solving $2(x-3)^2 + 1 = 9$ with a mapping diagram.
 - a. Express $f(x) = 2(x-3)^2 + 1$ as composition of core linear and quadratic functions. f(x) = h(m(q(z(x)))) where

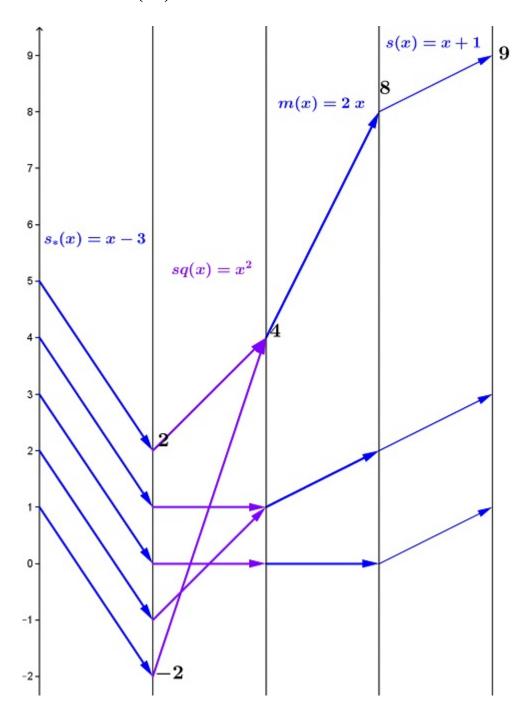
$$h(x) =$$
 $m(x) =$
 $q(x) =$

$$q(x) =$$

- z(x) =
- b. Sketch a mapping diagram for f as a composition.



c. On the mapping diagram below indicate by circling numbers and arrows how the diagram visualizes the solution of $2(x-3)^2 + 1 = 9$. Check the solutions.



Check: