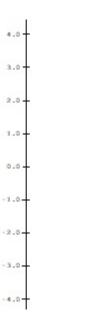

a. Complete the following tables for m(x) = 2x and s(x) = x + 1

1.

x	m(x) = 2x	s(x) = x + 1
2		
1		
0		
-1		
-2		

b. Using the data from part a), on separate diagrams sketch mapping diagrams for m(x) = 2xand s(x) = x+1

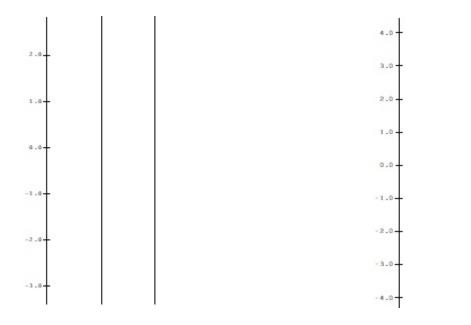


Using Mapping Diagrams to Make Sense of Functions and Calculus I Martin Flashman ©2016

- 2. Let $q(x) = x^2$.
 - a. Complete the following table for $q(x) = x^2$.

x	$q(x) = x^2$
2	
1	
0	
-1	
-2	

b. Using the data from part a), sketch a mapping diagram for $q(x) = x^2$.


Using Mapping Diagrams to Make Sense of Functions and Calculus I Martin Flashman ©2016

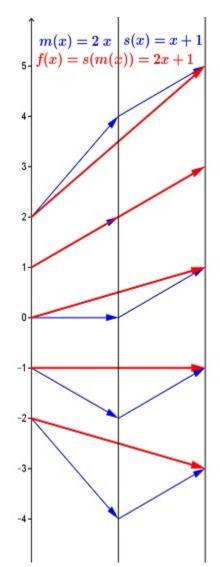
3.

a. Complete the following table for the composite function f(x) = s(m(x)) = 2x + 1.

X	m(x) = 2x	s(m(x)) = 2 x + 1
2		
1		
0		
-1		
-2		

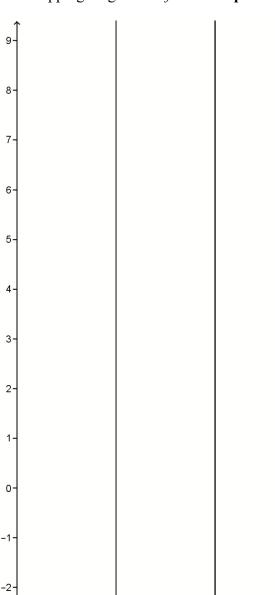
- b. Use the table and the previous sketches of 1.b to draw a composite sketch of the mapping diagram with 3 axes for the composite function f(x) = s(m(x)) = 2x + 1
- c. Draw a sketch for the mapping diagram with $2 \operatorname{axes of} f(x) = 2 x + 1$.

Using Mapping Diagrams to Make Sense of Functions and Calculus I Martin Flashman ©2016


- 4. Solving Equations:
 - a. Use a standard algebraic approach to solve the following equation. Show all steps. Check your answer.

2x + 1 = 5.

Work:


Check:

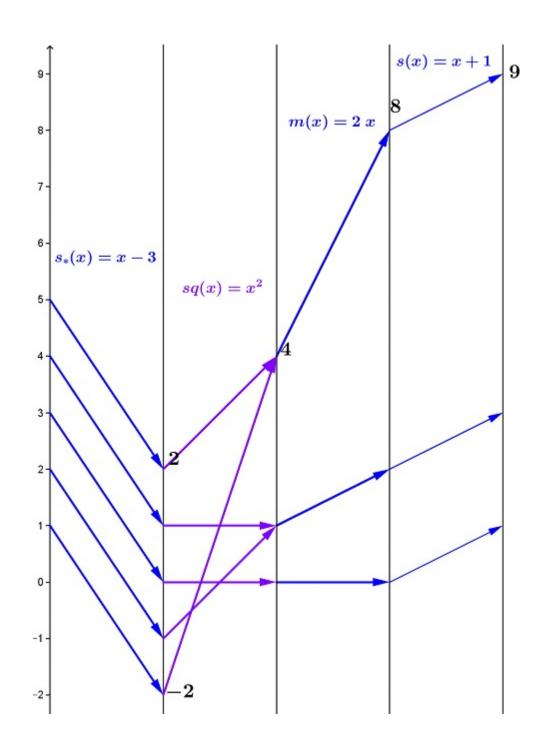
b. On the mapping diagram below indicate by adding and circling numbers and arrows how the diagram visualizes the work in your algebraic solution of 2x + 1 = 5.

5. Solve $2(x-3)^2 + 1 = 9$ with a mapping diagram. Understand the problem (Polya: Step 1): $2(x-3)^2 + 1$ is a function of x. $f(x) = 2(x-3)^2 + 1$ Find any and all x where f(x) = 9.

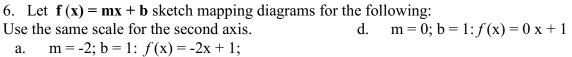
- a. Express $f(x) = 2(x-3)^2 + 1$ as composition of core functions. f(x) = h (m (q (z (x)))) where $h (x) = _$ $m (x) = _$ $q (x) = _$ $z (x) = _$
- b. Sketch a mapping diagram for f as a composition.

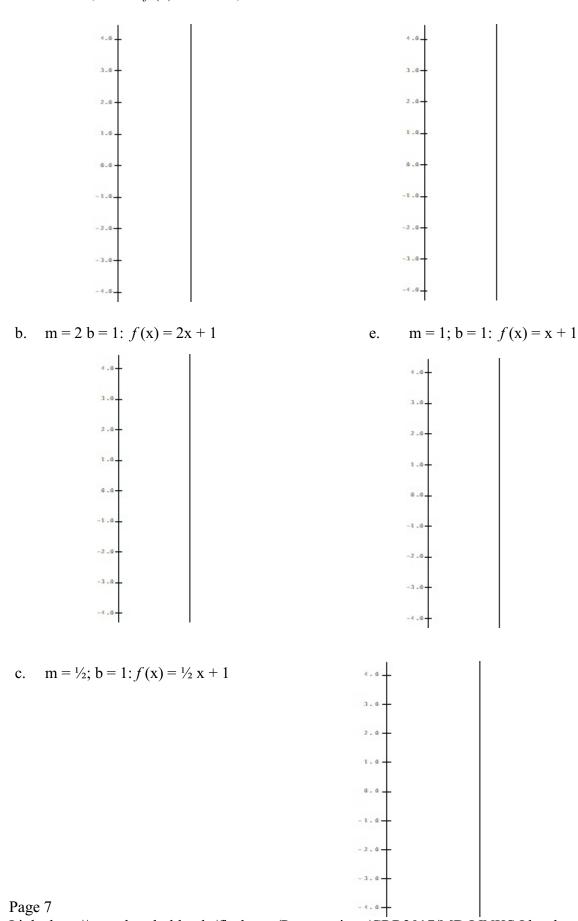
Mapping Diagrams Making Sense of Calculus with Mapping Diagrams Martin Flashman©2016

Make a plan (Polya: step 2)

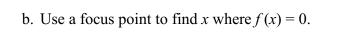

Undo f(x) = 9 by undoing each step of f: Undo h(x) = x+1;Undo m(x) = 2x;Undo $q(x) = x^2$ Undo z(x) = x-3

Execute the plan (Polya: Step 3)


c. On the mapping diagram below indicate by circling numbers and arrows how the diagram visualizes the solution of $2(x-3)^2 + 1 = 9$.


d. Check the solutions.

Check :

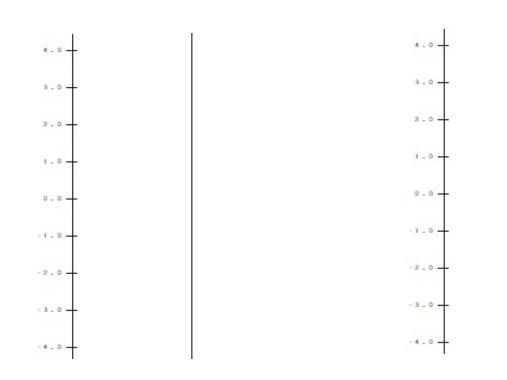


Links:http://users.humboldt.edu/flashman/Presentations/CRR2017/MD.LINKS.I.html

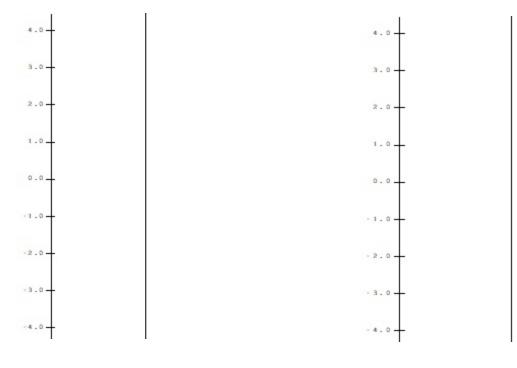
- 7. Suppose f is a linear function with f(1)=3 and f(3)=-1.
 - a. Use a focus point to find f(0).

- 8. Suppose *f* is a linear function with f(x)=2x-1.
 - a. Sketch a mapping diagram for considering whether $\lim_{x \to 1} f(x) = 1.5$ with $\epsilon = \frac{1}{2}$ and $\delta = 0.5$.
- b. Sketch a mapping diagram for considering whether $\lim_{x \to 1} f(x) = 1$ with $\epsilon = \frac{1}{2}$ and $\delta = 0.25$.

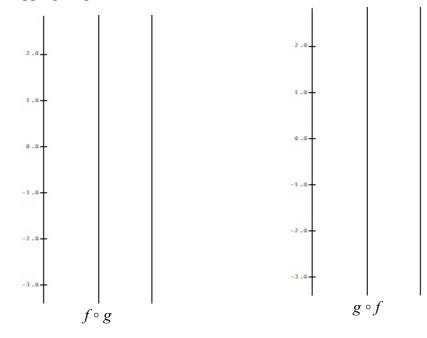
2.0

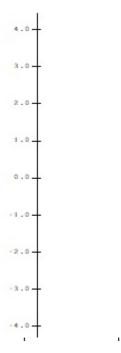

1.0

0.0


1.0

2.0


3.0


9. Let $f(x) = x^2 - 1$. Visualize an estimation of the derivative f'(1) as a focus point and derivative "vector" on a mapping diagram using $\Delta x = \pm 0.1$.

10. Let f(x) = 2x and g(x) = -3x + 1. Visualize the composition of linear functions $f \circ g$ and $g \circ f$ using mapping diagrams.

11. Let $f(x) = x^2 - 1$. Use a mapping diagram to visualize estimating the values of f(1.1) and f(0.9) with the differential. [Use $dx = \pm 0.1$, near the value for x = 1 where f(1) = 0, and dy = f'(1) * dx.]

12. Complete the following table to estimate of the solution f(2) of the following initial value problem by Euler's method with n = 4 ($\Delta x = \frac{1}{2}$). Use a mapping diagram to visualize the result.

$\frac{dy}{dx} = f$	f'(x) = 2x -	$1 \operatorname{with} f(0) = 1.$		
x	f(x)	$\frac{dy}{dx} = f'(x) = 2x - 1$	dy = f'(x)dx = (2x-1)dx	4.0-
0	1			2.0-
1/2				1.0
1				- 1 . 0
3/2				- 2 - 0
2				- 4 - 0