Visualizing Quadratic, Cubic, and Quartic Equation Solutions: An Introduction to Complex Numbers, Functions, and Mapping Diagrams

Martin Flashman ©2018

1.

a. Complete the following tables for m(x) = 2x and s(x) = x + 1

х	m(x) = 2x	s(x) = x + 1
2		
1		
0		
-1		
-2		

b. Using the data from part a), on separate diagrams sketch mapping diagrams for m(x) = 2x and s(x) = x+1

BCME 2018 A20

Visualizing Quadratic, Cubic, and Quartic Equation Solutions: An Introduction to Complex Numbers, Functions, and Mapping Diagrams

Martin Flashman ©2018

- 2. Let $q(x) = x^2$.
- a. Complete the following table for $q(x) = x^2$.

х	$q(x) = x^2$
2	
1	
0	
-1	
-2	

b. Using the data from part a), sketch a mapping diagram for $q(x) = x^2$.

Visualizing Quadratic, Cubic, and Quartic Equation Solutions: An Introduction to Complex Numbers, Functions, and Mapping Diagrams

Martin Flashman ©2018

3.

a. Complete the following table for the composite function f(x) = s(m(x)) = 2x + 1.

х	m(x) = 2x	s(m(x)) = 2 x + 1
2		
1		
0		
-1		
-2		

- b. Use the table and the previous sketches of 1.b to draw a composite sketch of the mapping diagram with 3 axes for the composite function f(x) = s(m(x)) = 2x + 1
- c. Draw a sketch for the mapping diagram with 2 axes of f(x) = 2x + 1.

BCME 2018 A20

Visualizing Quadratic, Cubic, and Quartic Equation Solutions: An Introduction to Complex Numbers, Functions, and Mapping Diagrams

Martin Flashman ©2018

- 4. Let $q(x) = x^2$ and $R(x) = s(q(x)) = x^2 + 1$.
 - a. Complete the following tables for $q(x) = x^2$ and $R(x) = s(q(x)) = x^2 + 1$

х	$q(x) = x^2$	$R(x) = s(q(x)) = x^2 + 1$
2		
1		
0		
-1		
-2		

b. Using the data from part a), on separate diagrams sketch mapping diagrams for the composition $R(x) = s(q(x)) = x^2 + 1$ with three axes and then two axes.

Visualizing Quadratic, Cubic, and Quartic Equation Solutions: An Introduction to Complex Numbers, Functions, and Mapping Diagrams

Martin Flashman ©2018

5. Solving Equations:

 Use a standard algebraic approach to solve the following equation. Show all steps. Check your answer.

$$2x + 1 = 5$$
.

Work:

Check:

b. On the mapping diagram below indicate by adding and circling numbers and arrows how the diagram visualizes the work in your algebraic solution of 2x + 1 = 5.

BCME 2018 A20

Visualizing Quadratic, Cubic, and Quartic Equation Solutions: An Introduction to Complex Numbers, Functions, and Mapping Diagrams

Martin Flashman ©2018

- 6. Solving $2(x-3)^2 + 1 = 9$ with a mapping diagram.
 - a. Express $f(x) = 2(x-3)^2 + 1$ as composition of core linear and quadratic functions. f(x) = h(m(q(x(x)))) where

h(x) =	
m(x) =	
q(x) =	
7 (v) -	

b. Sketch a mapping diagram for f as a composition

	teten a mapping an	agrain for j as a co.	inposition.	
9-				
8-				
7-				
6-				
5-				
4-				
3-				
2-				
1-				
0-				
-1-				
-2-				

Visualizing Quadratic, Cubic, and Quartic Equation Solutions: An Introduction to Complex Numbers, Functions, and Mapping Diagrams

Martin Flashman ©2018

c. On the mapping diagram below indicate by circling numbers and arrows how the diagram visualizes the solution of $2(x-3)^2 + 1 = 9$. Check the solutions.

Check:

BCME 2018 A20

Visualizing Quadratic, Cubic, and Quartic Equation Solutions: An Introduction to Complex Numbers, Functions, and Mapping Diagrams

Martin Flashman ©2018

- 7. Let $f(z) = z^2 + 1$.
 - a. Complete the following table for *f*:

f (a+bi)	-1	0	1
i	f(-1 + i) =	$f(i) = \int$	f(1+i) = 1+2i
0	f(-1) = 2	f(0) = 1	f(1) = 2
-i	f(-1 - i) =	f(-i) =	f(1 - i) =

b. Sketch a mapping diagram for the table data below on the pair of complex planes.

