Part I Mapping Diagrams for Real Functions Complex Arithmetic |
Part II Complex Functions |
2.2 Complex Geometry- The Complex Plane Complex numbers can be identified with points in a cartesian plane by having $a +bi$ identified with the point with coordinates $(a,b)$ or with position vectors by identifying $a+bi$ with the vector $<a,b>$. With this identification $i$ is identified with the point $(0,1)$ and $-i$ is identified with $(0,-1)$. 2.2.1 Complex Number Norm (Magnitude): The norm of $z$ is defined by $|z| = |a+bi| = \sqrt{ a^2 +b^2}$ 2.2.2 Polar Representation of $z$: ¤ Using trigonometry we have the identification: $$z = |z| \cos( \theta) + |z| \sin(\theta) i = |z| [\cos( \theta) + \sin(\theta) i] = |z| cis( \theta) $$ where $a = \cos( \theta ), b = \sin(\theta)$. $$z$$ is sometimes represented as an ordered pair $$(|z|, \theta)$$. The angle $\theta$ determined by $z$ can be measured in degrees or radians and restricted to be in a specific interval. For example $\theta \in [0,2 \pi)$ or $\theta \in (-\pi, \pi]$. Thus the angle can be considered a function of $z$, called the argument of $z$: $Arg(z) =\theta$. |
2.3.1 Complex Addition: $z_1+z_2$ ¤ If $z_1 = a_1 + b_1i$ and $z_2 = a_2 + b_2i$ then $$z_1+z_2 =a_1 + a_2 + (b_1+ b_2) i $$ Example: If $z_1 = 2+3i; z_2= 1 - i$ then $z_1+z_2= (2+1) + (3-1) i = 3 + 2i $. The addition can be thought of as vector addition - with separate addition of the real and imaginary parts. Addition can be visualized in the complex plane by using parallelograms. |
Algebraically:If
$z_1 = 2+3i; z_2= 1 - i$ then $z_1 \cdot z_2= (2+3i) \cdot (1-i) = 2
\cdot 1 - 3\cdot i^2 + 3i \cdot 1 +2 \cdot (-i) = (2+3) +(3- 2)i =
5+i$. It is possible understand complex multiplication geometrically using the polar or the exponential representation (in radian measure): $z_1=|z_1| [\cos( \theta_1) + \sin(\theta_1) i] = |z_1|e^{i\theta_1} ;\ z_2=\cdot |z_1| [\cos( \theta_2) + \sin(\theta_2) i] = |z_2|e^{i\theta_2}$ $z_1 \cdot z_2= |z_1| [\cos( \theta_1) + \sin(\theta_1) i] \cdot |z_1| [\cos( \theta_2) + \sin(\theta_2) i] $ $ = |z_1|\cdot |z_1| [\cos( \theta_1) + \sin(\theta_1) i] \cdot [\cos( \theta_2) + \sin(\theta_2) i]$ $ = |z_1|\cdot |z_1| [\cos( \theta_1)\cos( \theta_2) - \sin(\theta_1)\sin(\theta_2) + (\sin(\theta_1)\cos( \theta_2) + \sin(\theta_2) \cos(\theta_1) )i]$ $ =|z_1|\cdot |z_1| [\cos( \theta_1 + \theta_2) + \sin(\theta_1 +\theta_2) i]$ $ =|z_1|\cdot |z_1| cis (\theta_1 +\theta_2) $ or more simply using $\theta$ in radian measure: $z_1 \cdot z_2= |z_1|e^{i\theta_1}\cdot |z_2|e^{i\theta_2}$ $ =|z_1|\cdot |z_1| e^{(\theta_1 +\theta_2)i}$ |
Example: Express $\frac 1{2+3i}$ in the standard form of $a + bi$. Solution: $\frac 1{2+i} =\frac 1{2+i} \cdot \frac {2-i}{2-i} = \frac{2-i}{4+1} = \frac 2{5} - \frac 3{5}i$. Fact: If $a^2+b^2 \ne 0$ then $\frac1{a+bi} = \frac a{a^2 + b^2} - \frac b{a^2 + b^2}i $ |