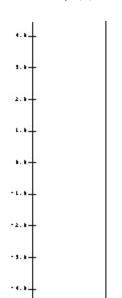
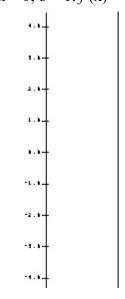

- 1. Suppose that f(x) = 5x 7 for all $x \in \mathbb{R}$.
 - a. Complete the following table:

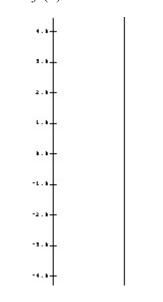
x	-3	-2	-1	0	1	2	3
f(x)							

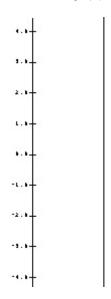
b. Complete the following mapping diagram for *f* with the indicated numbers (determine an appropriate scale for the target values.):

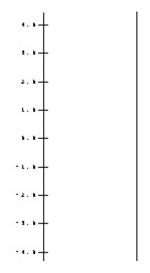

c. Sketch a graph for f based on the chart (determine an appropriate scale for the vertical axis.):


2. Let f(x) = mx + b sketch mapping diagrams for the following:

Use the same scale for the second axis.


a.
$$m = -2$$
; $b = 1$: $f(x) = -2x + 1$ $m = 2$;


d.
$$m = 0$$
; $b = 1$: $f(x) = 0 x + 1$


b.
$$b = 1$$
: $f(x) = 2x + 1$

e.
$$m = 1$$
; $b = 1$: $f(x) = x + 1$

c.
$$m = \frac{1}{2}$$
; $b = 1$: $f(x) = \frac{1}{2}x + 1$

3. Using the focus point to solve a problem. [Use the same scale for the second axis.]

E 1. Solving a linear equation: 2x+1=5

Let
$$f(x) = 2x+1$$

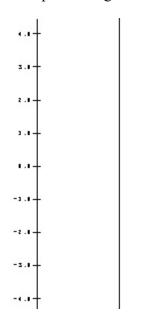
For which x does f(x) = 5?

Solution: Find the focus points [2,1] for f.

Use [2,1] to find the solutions.

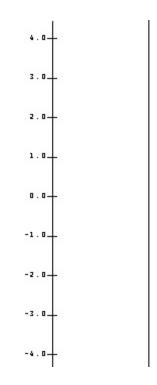
4. Suppose f is a linear function with f(1) = 3 and f(3) = -1.

Find f(0). Ans. ____


For which x does f(x) = 0. Ans.:

Solution: Find the focus point P_f for f.

Use P_f to find the solution.



a. On separate diagrams sketch mapping diagrams for g(x) = 2x and h(x) = x+1

- 1.1-1.1-1.1--1.1--2.1--3.1-
- b. Use these sketches to draw a composite sketch of the mapping diagram for the composite function f(x) = h(g(x)) = (2x) + 1 and then a sketch for the mapping diagram of f(x) = 2x + 1

