3.0

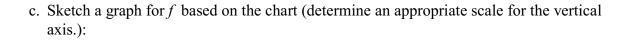
z . c

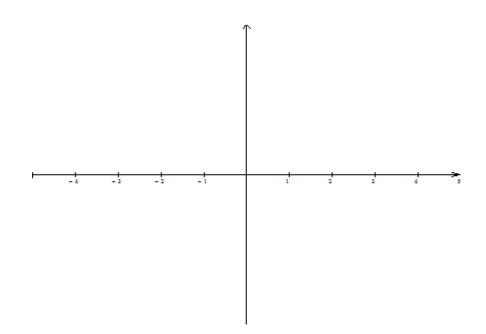
1.0

0.0

-1.0

-2.0


-3.0


-4.0

Suppose that f (x) = 5x - 7 for all x ∈ ℝ.
a. Complete the following table :

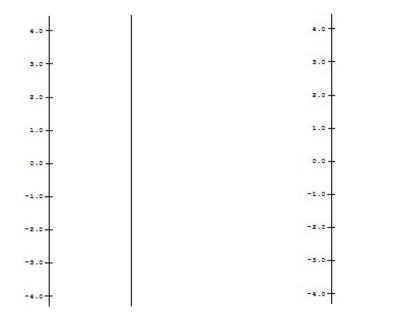
x	-3	-2	-1	0	1	2	3
f(x)							

b. Complete the following mapping diagram for f with the indicated numbers (determine an appropriate scale for the target values.):

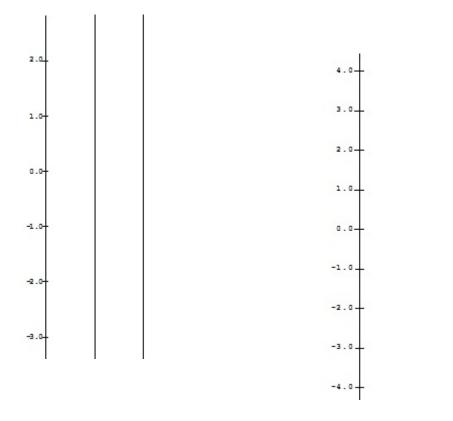
2. Let $f(x) = \mathbf{m} x + \mathbf{b}$ sketch mapping diagrams for the following: Use the same scale for the second axis. a. m = -2; b = 1: f(x) = -2x + 1d. m = 0; b = 1; f(x) = 0 x + 14.0 4.0 3.0-3.0 2.0-2.0 1.0_ 1.0. 0.0-0.0 -1.0. -1.0. -2.0 -2.0--1.0--3.0--4.0_ - 4.0 b. m = 2; b = 1: f(x) = 2x + 1e. m = 1; b = 1: f(x) = x + 14.0. 4.0-3.0 3.0. 2.0. 2.0-1.0. 1.0-0.0-0.0. -1.0. -1.0. -2.0. -2.0. -3.0 -1.0. -4.0 -4.0c. $m = \frac{1}{2}; b = 1: f(x) = \frac{1}{2}x + 1$ 4.0

3.0 2.0 1.0 -1.0 -2.0 -4.0

3. Using the focus point to solve a problem. [Use the same scale for the sec E 1.Solving a linear equation: $2x+1=5$	cond axis.]
Let $f(x) = 2 x + 1$	
For which $x \operatorname{does} f(x) = 5$?	4.0-
	3.0-
Solution: Find the focus points [2,1] for <i>f</i> .	2.0
Use [2,1] to find the solutions.	2.0
	1.0-
	e.e_
	-1.0-
	-2.0-
	-3.0-
	-4.0-


4. Suppose f is a linear function with f(1) = 3 and f(3) = -1. Find f(0). Ans. _____ For which x does f(x) = 0. Ans.: _____

Solution: Find the focus point P_f for *f*. Use P_f to find the solution.


4.03.02.01.0-1.0-3.0-4.0-

5.

a. On separate diagrams sketch mapping diagrams for g(x) = 2x and h(x) = x+1

b. Use these sketches to draw a composite sketch of the mapping diagram for the composite function f(x) = h(g(x)) = (2x) + 1 and then a sketch for the mapping diagram of f(x) = 2x + 1

c. Use the sketches of part a. to draw a composite sketch of the mapping diagram for the composite function p(x) = g(h(x)) = 2(x + 1) and then a sketch for the mapping diagram of p(x) = 2(x + 1) = 2x + 2

	4.0 -
2.0-	3.0 -
1.0-	z.0 -
	1.0 -
	0.0-
1.0-	-1.0-
2.6-	-2.0
	-3.0-
a	-4.0-

Inverse linear functions:

6.

a. Make a transparency for mapping diagrams for g(x) = 2x and h(x) = x + 1. Flip the transparency over and use this on separate diagrams to sketch mapping diagrams for

Invg(x) = 1/2 x	and	Invh(x) = x-1
4.0-		4.0-
3.0-		3.0-
2.0-		2.0-
1.0-		1.0-
0.0-		0.0-
-1.0-		-1.0-
-2.0-		-2.0-
-3.0-		-3.0-
-4.0		-4.0-

"Socks and shoes" with mapping Diagrams

b. Recall f(x) = h(g(x)) = (2 x) + 1 Use the sketches of part a to draw a composite sketch of the mapping diagram for the composite function invf(x) = invg(invh(x)) = 1/2(x - 1) and then a sketch for the mapping diagram of invf(x) = 1/2(x - 1) = 1/2 x - 1/2

	4.0-
2.0	3.0-
1.0-	z.0 -
	1.0 -
0.0-	0.0-
-1.6-	-1.0-
-0.6-	-2.0-
	-3.0-
-3.0_	-4.0-

Think about These Problems:

7. How would you use the Linear Focus to find the mapping diagram for the function inverse for a linear function when $m \neq 0$?

8. How does the **choice of axis scales** affect the **position of the linear function focus point** and its use in solving equations?