In general: the sum of the interior angles in a n sided polygon is
A regular polygon is a polygon where the sides are all of equal length and the angles are all congruent (or of equal measure).
name of polygon | n |
degrees of the interior measure of each angle |
360 degrees divided by # in Column 2 |
equilateral triangle | 3 |
60 | 360 / 3 = 120 |
square | 4 |
90 | 360/4= 90 |
regular pentagon | 5 |
3*180/5= 108 |
360/5= 72 |
regular hexagon | 6 |
4*180/6=120 |
360/6= 60 |
regular heptagon | 7 |
5*180/7 |
360/7 |
regular octagon | 8 |
6*180/8=135 |
360/8 = 45 |
regular dodecagon |
12 |
10*180/12=1800/12=150
|
360/12=30 |
(180 - 360/n) + (180 - 360/k) + (180
- 360/p) = 360
3*180 -360( 1/n+1/k+1/p)= 2*180
1*180 = 360( 1/n+1/k+1/p)
So, for example, n=3, k=4
and p= 5 is not possible since
Number of polygons around a vertex |
Equation for angle sum = 360 | Equivalent Arithmetic equation | Solutions to the arithmetic equations. | |||||||||||||||||||||||||||||||
3: n , k, p | 180 - 360/n+180 - 360/k+180 - 360/p = 360 | 1/n+1/k+1/p =1/2 |
|
|||||||||||||||||||||||||||||||
4: n, k, p, z | 180 - 360/n+180 - 360/k+180 - 360/p 180 - 360/z = 360 | 1/n+1/k+1/p +1/z =2/2 =1 |
|
|||||||||||||||||||||||||||||||
5: n, k, p, z, w | 180 - 360/n+180 - 360/k+180 - 360/p+180 - 360/z+180 - 360/w = 360 | 1/n+1/k+1/p +1/z+1/w =3/2 |
|