Assignment Number |
|
|
* indicates the problem will be collected |
|
|||||||||||||
8-25/27 |
Preface to course: LA: Preface to the Instructor! LA: A.1; B.3 ; B.4 |
||||||||||||||||
#1 |
9-3 |
Review
SO: 1.1- 1.4 SO: 2.1- 2.9 SO: 3.1- 3.9 LA: 1.1.1-1.2.5 LA: 2.1-2.4 |
SO 1. 41(a-d), *45, *48a
SO 2. 37 - 40; *41(a,b), 50, 53 (A , B), *61a SO 3. 51(a,b), *53a, 61b, 63 LA: 1.1:5, 6 ; 1.2: 23 (a-e) LA: 2.1: 8; 2.4: 5, 16, 20 (a,b), 21b, 22a |
||||||||||||||
#2 |
9-12 |
Complex Numbers
LA: 2.1.3; SO: 1.7 SO: p 116 notations. |
SO 1. 66, *68
|
||||||||||||||
Fields
(Definition and examples) LA: pp 175-178 LA: Appendix B.2-B.4 |
Discuss briefly how you determined your response. Verify that Q[sqr(2)] is a field. |
Find all invertible matrices 3 by 3 matrices with entries only 0 or 1. | |||||||||||||||
#3 |
9-19/22 |
SO: 4.1,4.2, 4.3, 4.5 , A.12(added 9-17) LA: 4.1, 4.2 |
SO: 4. 72, *74, *76 LA: 4.1: 6,9 ; 4.2: 13, *6, *11, *12 *From Notes on Properties of Vector spaces
|
Suppose V is a vector space over the field F and U is a family of subspaces of V. [The family may have an infinite number of distinct subspaces for members.] Let W = {v in V : v is an element of every subspace that is a member of U,} Prove: W is a subspace of V |
|||||||||||||
Summary |
9-24 |
*Partnership Summary #1 of work till 9-19 1 page 2 sides or 2 pages 1 side One submission per partnership. |
|||||||||||||||
#4 |
9-24/26? |
SO:4.1,4.5 SO:4.10 |
SO: 4. 77, *78, *80, *81a, 82
SO: 4. *118, 124 |
||||||||||||||
#4 |
9-26 |
SO: 4.7 |
SO:4. * 119
*Show that C, the complex numbers, is a vector space over R, the real numbers, with subspaces X={a+0i: a in R} and Y= {0 + bi: b in R}. Show C = X `oplus` Y (the direct sum). |
||||||||||||||
#5 |
10-6 |
SO: 4.4, 4.7, 4.8 LA: 4.3, 4.4 |
SO: 4. 83 ,84, 89, *90a, *91, 92 LA: 4.3: 10, *19, *33 SO: 4: 97 a, 99a, *101, 103 |
||||||||||||||
#6 |
10-13 |
SO: 4.8, 4.9, 4.11 LA: 4.4 |
SO: 4.: 104a, 107, 110a, *128, *132 *1. Show that the dimension of C, the complex numbers, as a vector space over R is 2. *2. Suppose that V is a 3 dimensional vector space over Z2. Prove that V has exactly 8 elements. |
Generalize the statement of problem 2 and prove your generalization is correct. | |||||||||||||
#7 |
10-20 |
SO: 5.2, 5.3 LA: 5.1, 5.2 |
SO: 5. 45, 47, *49a, *51, *60 LA: 5.1: 7; 5.2: *7, 9, *10, *11, *16 |
||||||||||||||
#8 |
10-31 |
SO: 5.4,5.5, 5.6,6.2,6.5 LA: 5:2, 5.3, 5.5 |
SO: 5. 56, *70,*71, *72a LA: 5.3: *7; 5.5: 13, 14 *1. Suppose V is a vector space and P: V -> V is a linear operator where PP = P. Prove: (i) If w is in the range of P then P(w) = w. (ii) for any v in V, v-P(v) is in the Null Space of P. *2. Suppose V is a vector space and W<V. For z a vector in V, let z+W = { v in V where v = z +w for some w in W}. Prove if z' is a vector in V, then z+W = z'+W if and only if z' - z is a vector in W. |
||||||||||||||
#9 |
11-19 |
SOS: 5.2, 5.7, 9.1,9.2, 9.7(in part) LA: 6.1.1, 6.1.3; 6.2.2; theorem 6.2; 6.3 |
SO: 5. *64, *65, 69, 75a,b, 76 a,b, *83a,*88 6. *37b, *62 9. *41a, 46, 49a LA: *6.1.8, *6.1.14, 6.4.3, 6.4.6 |
||||||||||||||
#10 |
12-5 |
Continue with previous assignment readings plus SOS:9.4, 9.7,9.8 10.3, 10.4,10.5(?),10.6, 10.7 |
SO: 9. 53,54 SO:10. *36, 38, *47 * Complete the two parts of the proof of the lemma from 11-19 about the polynomial g. |
||||||||||||||
SOS:: 7.2, 7.3, 7.5, 7.6, 7.7 |
SOS: 7. 57, 59, 64, *72, *75 |
||||||||||||||||
SOS:7.8 |
*1.Suppose T is the matrix for a Markov Chain. Prove:Powers of T have real number entries that are never larger than 1. *2. Discuss in detail the long run behavior of the Markov chain with matrix:
SOS:7. *83, *86 | ||||||||||||||||
TBA |
SOS: 8. 39, 41, *60, *69 |