|
|
* indicates the problem will be collected |
|
||||||||||||
8-27 | Review
SO: 1.1- 1.4 SO: 2.1- 2.9 SO: 3.1- 3.9 LA: Preface to the Student |
SO 1. 41(a-d), *45, *48a
SO 2. 37 - 40; *41(a,b), 50, 53 (A , B), *61a SO 3. 51(a,b), *53a, 61b, 63 |
|||||||||||||
8-29 | Complex Numbers
LA: pp 2-3. SO: 1.7 |
SO 1. 66, *68
LA 1. *1, *2 |
|||||||||||||
9-3 | Fields (Definition and examples) |
Discuss briefly how you determined your response. Verify that Q[sqr(2)] is a field. Show that a2 + a + 1 is not 0. |
Find all invertible matrices 3 by 3 matrices with entries only 0 or 1. | ||||||||||||
9-5 | LA: pp 4-10
SO: 4.1,4.2, 4.3 |
SO: 4. 72, *74, *76 | |||||||||||||
9-8 | LA:11-14
SO:4.1,4.5 |
SO: 4. 77, *78, *80, *81a, 82
LA:: *4, *6 |
|||||||||||||
9-12 | LA:14-18
SO:4.10 |
LA: *8,10,*13,*15
SO: 4. *118, 124 |
|||||||||||||
9-15 | LA:21-27
SO: 4.7 |
LA: 1: *11, *14
SO:4. * 119 *Show that C, the complex numbers, is a vector space over R, the real numbers, with subspaces X={a+0i: a in R} and Y= {0 + bi: b in R}. Show C = X #Y (the direct sum). First partnership summary of work through 9-12 is due by 5 pm. |
|||||||||||||
9-19 |
LA: 21-29 SO: 4.4, 4.7, 4.8 |
LA: 2: *1,*2, *5, SO: 4. 83,84, 86, 89, *90a, *91, 92 |
|||||||||||||
9-22 |
LA: 21-29 |
LA: 2: *8,*9, *12, 13,14, 17 SO: 4: 97 a, 99a, *101, 103 |
|||||||||||||
9-26 |
LA: 27-34; 38-41 SO: 4.8, 4.9, 4.11 |
LA : 2: *17 SO: 4.: 104a, 107, 110a, *128, *132 |
|||||||||||||
9-29 |
LA: 38-41 SO: 5.2, 5.3 |
LA: 3: 1,*2 SO: 5. 45, 47, *49a, *51, *60 *1. Show that the dimension of C, the complex numbers, as a vector space over R is 2. *2. Suppose that V is a 3 dimensional vector space over Z2. Prove that V has exactly 8 elements. |
Generalize the statement of problem 2 and prove your generalization is correct. |
||||||||||||
10-3 |
LA:41-47 SO: 5.4, 5.6, |
LA: 3: 3, *4, *5 SO: 5. 56, 60, *70,*71, *72a |
|||||||||||||
10-10 |
LA: 44-47, 53-57 SO: 5.4, 5.5, 5.6 |
LA: 3: *7, 8, *9, 14, 22, 23 SO: *64, *65, 69, 75a,b, 76 a,b, *83a *1. Suppose V is a vector space and P: V -> V is a linear operator where PP = P. Prove: (i) If w is in R(P) then P(w) = w. (ii) for any v in V, v-P(v) is in N(P). *2. Suppose v is a vector space and W<V. For z a vector in V, let z+W = { v in V where v = z +w for some w in W}. Prove if z' is a vector in V, the z+W = z'+W if and only if z' - z is a vector in W. |
|||||||||||||
10-13 |
LA:48 -58 SOS: 5.2, 5.7, 6.2,6.5 |
LA:3: *10, 20, 21,*23,24 SO: 5. *88, 89; 6. *37b, *62 |
|||||||||||||
11-3 |
LA: 64-71, 76- 83,87-90 179-182 SOS: 9.1,9.2, 9.7(in part) |
LA: 4: 1, *2, *4; LA: 5: *5, *8, SO: 9. *41a, 46, 49a |
|||||||||||||
11-12 |
Continue with previous assignment readings plus SOS:10.3, 10.4 |
LA : 5: 9, *10, *12, 15, 16 LA: 8. 21,*22 SO: 9. 52, 53 SO:10. *36, 38 * Complete the two parts of the proof of the lemma from 11-5 about the polynomial g. |
|||||||||||||
11-19 |
LA: 186-187, 97-116 SOS:: 7.2, 7.3, 7.5, 7.6, 7.7 |
LA: 8.*30, *31 LA: 6. *4, *6 , 9 SOS: 7. 57, 59, 64, *72, *75 |
|||||||||||||
12-3 |
SOS:7.8 |
*1.Suppose T is the matrix for a Markov Chain. Prove:Powers of T have real number entries that are never larger than 1. *2. Discuss in detail the long run behavior of the Markov chain with matrix:
SOS:7. *83, *86 |
|||||||||||||
12-10 |
TBA |
SOS: 8. 39, 41, *60, *69 LA: 7. *21 LA: 10 . *20, *21 |