Math 240 Spring, 2012

- 1. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ so $g \circ f: X \rightarrow Z$. Prove the following: a. If f and g are onto (surjective) then $g \circ f$ is onto.
 - b. If f and g are 1:1 (injective) then $g \circ f$ is 1:1.

 - c. If f and g are bijective then $g \circ f$ is bijective.
- 2. Suppose $f: X \rightarrow Y$. Prove the following:
 - a. If $A \subseteq X$ then $A \subseteq f^{-1}(f(A))$. Give an example where $f^{-1}(f(A)) \neq A$.
 - b. If $B \subseteq Y$ then $f(f^{-1}(B)) \subseteq B$. Give an example where $f(f^{-1}(B)) \neq B$.
 - c. If b and c are elements of Y with $b \neq c$ then $f^{-1}(\{c\}) \cap f^{-1}(\{b\}) = \emptyset$ [revised 3/28]
- 3. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow X$. Prove the following: a. If $g \circ f = id_x$ then f is 1:1 (injective). b. If $f \circ g = id_{y}$ then f is onto (surjective).
- 4. Suppose $f: X \rightarrow Y$ and there is a function $g: Y \rightarrow X$ so that i) $f \circ g = id_{y}$ and ii) $g \circ f = id_{x}$. Prove that the function g is unique with respect to functions satisfying properties i) and ii).
- 5. Suppose σ is a permutation of the set {1,2,3,4,5} and for each n, $\sigma \circ \sigma(n) = n$. Prove that for some n, $\sigma(n) = n$. [Hint: Use an indirect proof.] Bonus: Generalize this problem and prove your generalization.