- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 5x + 4.
 - a. Prove f is a one to one function.
 - b. Prove *f* is an onto function.
 - c. Prove f([0,1]) = [4,9].
 - d. Prove $f^{-1}([0, 14]) = [-4/5, 2]$.
- 2. Generalize(unify) the work in parts a and b of Problem #1 for any linear function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = mx + b where $m \ne 0$. Discuss briefly the significance of the condition on m.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 5x^2 + 4$.
 - a. Prove f is **not** a one to one function.
 - b. Prove f is **not** an onto function.
 - c. Prove f([0,1]) = [4,9].
 - d. Prove $f^{-1}([0, 24]) = [-2, 2]$.
- 4. Generalize (unify) the work in parts a and b of Problem #3 for any quadratic function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = Ax^2 + Bx + C$ where $A \neq 0$.
- 5. Consider $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 + mx + 5$.
 - a. Use calculus to prove that if m = 1 then f is a one to one function.
 - b. Use calculus to prove that if m = -1 then f is **not** a one to one function.
 - c. BONUS: Prove that f is a one to one function if and only if $m \ge 0$.