| name of polygon | degrees of the interior measure of each angle |
360 degrees divided by # in Column 2 |
| equilateral triangle | 60 | 360 / 6 = 60 |
| square | 90 | 360/4= 90 |
| regular pentagon | 3*180/5= 108 |
360/5= 72 |
| regular hexagon | 4*180/6=120 |
360/6= 60 |
| regular heptagon | 5*180/7 |
360/7 |
| regular octagon | 6*180/8=135 |
360/8 = 45 |
(180 - 360/n) + (180 - 360/k) + (180 - 360/p) = 360
3*180 -360( 1/n+1/k+1/p)= 2*180
1*180 = 360( 1/n+1/k+1/p)
So, for example, n=3, k=4 and p=
5 is not possible since
| Number of polygons around a vertex |
Equation for angle sum = 360 | Equivalent Arithmetic equation | Solutions to the arithmetic equations. | |||||||||||||||||||||||||||||||
| 3: n , k, p | 180 - 360/n+180 - 360/k+180 - 360/p = 360 | 1/n+1/k+1/p =1/2 |
|
|||||||||||||||||||||||||||||||
| 4: n, k, p, z | 180 - 360/n+180 - 360/k+180 - 360/p 180 - 360/z = 360 | 1/n+1/k+1/p +1/z =2/2 =1 |
|
|||||||||||||||||||||||||||||||
| 5: n, k, p, z, w | 180 - 360/n+180 - 360/k+180 - 360/p+180 - 360/z+180 - 360/w = 360 | 1/n+1/k+1/p +1/z+1/w =3/2 |
|