Math 240	Proof Evaluation #6	Fall, 2006
M. Flashman		
Proposition 1: log(2)/log(3) is irrational.		
Proof : Assume that $log(2)/log(3) = log_3(2) = p/q$, with p, q integers and nonzero		
(no need to assume that the fraction is in lowest terms!) Then $2 = 3^{\frac{p}{q}}$ or $2^q = 3^p$.		
But this is impossible, for the left hand side is even and the right hand side is odd.		
		EOP.
Proposition 2. $\sqrt{2}$ is irrational.		
Proof : (attributed to Dedekind) Suppose $\sqrt{2}$ - being positive - is a rational number.		
Then there is a positive integer <i>n</i> for which $n \times \sqrt{2}$ is an integer.		
But this means that $n(\sqrt{2} - \text{integerpart}(\sqrt{2}))$ is a positive integer that is smaller		
than <i>n</i> . However, $n(\sqrt{2} - \text{integerpart}(\sqrt{2})) \times \sqrt{2}$ is an integer. If n were chosen to		
be the smallest such positive integer this would give a contradiction.		
		EOP.
	· · · · · · · · · · · · · · · · · · ·	
Proposition 3: There is an irrational number <i>r</i> such that $r\sqrt{2}$ is rational.		
Proof: If $\sqrt{3}\sqrt{2}$ is a rational number, then $\sqrt{3}$ is the desired example. If $\sqrt{3}\sqrt{2}$ is an		
irrational number then notice that $(\sqrt{3}\sqrt{2})^{\sqrt{2}} = 3$, which is a rational number.		
Hence either $\sqrt{3}$ or $\sqrt{3}\sqrt{2}$ is an irrational number r such that $r^{\sqrt{2}}$ is rational.		
		EOP
1. Consider the follow	ving statement:	

If a and b are relatively prime integers, then log(a)/log(b) is irrational.

- a. Discuss briefly how proposition 1 is a special case of this statement.
- b. Following the proof of proposition 1, prove the statement.

2.Using the argument of the proof of proposition 2 as a model, prove $\sqrt{3}$ is irrational.

3. In the proof of Proposition 3, the number $\sqrt{3}$ played an important role. Give a proof for the proposition without using the number $\sqrt{3}$. [Hint: Use $\sqrt{5}$.]

4. Assume that $\sqrt[3]{5}$ is an irrational number. Prove: There exists an irrational number *r* such that $r^{\sqrt[3]{5}}$ is a rational number.